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I. INTRODUCTION

The bonding of polymers to metals is accomplished through a
combination of chemical bonding and physical interlocking of the polymer
around surface asperities on the metal. Many detailed studies of this
process have been conducted (see Refs. 1-3 and the citations therein). It
is well known that the metal interface must remain in an uncorroded state
in order to preserve adhesion during component aging. Much less is known
about how to preserve that metal/polymer interface in the presence of
neighboring material layers that evolve liquid or gaseous by-products
during aging. Examples are (1) thermal insulators that must be held on
spacecraft outer bond lines by siloxanes that evolve acetic acid during
cure; (2) the various layers of coatings, liners, insulators, and
propellants that must adhere to solid-rocket motor cases despite the high
reactivity of some of the constituent materials; and (3) the adhesive
"flypaper" used in some electronics packages in order to catch stray solder
particles and hold them for long periods of time.

It is desired to investigate the effect of filled polymer liners in
retarding diffusion of corrosive species to the metal/polymer interface.
Consider the etched and bondable metal surface shown in Fig. I-1., After
corrosive attack [this report concerns gaseous hydrogen fluoride (HF) as an
example of a corrosive species], the same metal surface has the appearance
shown in Fig. I-2. Clearly, a barrier liner on this metal that could
prevent interaction with the HF would be desirable. The general situation
considered in this report is shown in Fig. I-3.

The transport coefficients of proposed liner materials must be
determined before calculations can reveal the extent to which the barrier
reduces the flux (J, in Fig. 1-3) of corrosive species (here, HF gas) at
the metal substrate. Therefore, in Section II it will be shown how these
transport coefficlients are determined fiom one-dimensional diffusion
experiments. Concentration profiles are measured in order to determine the
basic diffusion coefficient, D,, and a second parameter, H, which specified
the degree of reactivity between the gas and the liner material. 1In

1
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Fig. I-1. SEM Micrographs of Ti-6Al-4V Coupon Treated with a Sodium
Dichromate (Na2Cr2O7)/Sulphuric Acid Etchant Before Rinsing and
Vacuum Drying
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Effect of HF on Titanium Alloy
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Fig. 1-2. Severe Pock-Marking of Surface in SEM Micrographs After 1 Day's
Exposure of an Uncoated Ti-6Al1-4V Coupon to HF Vapor
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MATRIX MATERIAL
EVOLVING CORROSIVE BARRIER

—h(=f. 1 SPECIES uner  J2f2 0
INERT MATERIAL - ¢, 1) ¢ylx. 1) METAL
(sink) 0. G g 0, H SUBSTRATE
i
-f, 0 l, x
Fig. I-3. Definition of Geometry and Material Parameters. The

concentrations, ci(x, t), of corrosive particles give rise to
fluxes, J,;, of corrosive particles impinging on the metal
substrate and on the inert boundary material. The matrix
material from x = -%, to x = 0 has a diffusion coe{ficient, Dy,
and evolves corrosive particles at a rate r = Ge~8%. The
barrier liner from x = 0 to x = L, has a diffusion coefficient,
D2, and reacts with the corrosive species with a characteristic
rate, H.
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addition, the diffusion coefficient, D, of the corrosive species in the
original matrix must be known or determined, as well as the rate of
corrosive-species evolution, r. We take r = G exp(-gt), where G and g are
constants and t is time.

In Section III, several sets of diffusion coefficients and
reactivities are assumed for the two-layer system shown in Fig. I-3. Time-
dependent concentration profiles and cumulative fluxes are calculated. A
barrier effectiveness is defined which is 2zero when half the number of
evolved particles impinges on the metal substrate (the other half
disappearing in the sink material on the side of the decomposing layer
opposite to the metal substrate). The barrier effectiveness is 100% when
none of the evolved particles impinges on the metal substrate. For the
case of an 0.277-cm thick decomposing layer next to an 0.025-cm thick
barrier liner, it is shown that about half of the potentially impinging
corrosive species can be kept away from the metal substrate when the
diffusion coefficient of the liner is one-tenth that of the decomposing
matrix.

In Section IV, experimental results for the diffusion of gaseous HF in
a filled or unfilled polyurethane liner are reported. It is shown that
SrCrOy or carbon black can effect a tenfold or greater reduction in the
polyurethane diffusion coefficient. Thus, it seems reasonable to expect
filled polymeric liners to prevent about 50% of the potentially impinging,
corrosive particles from reaching the metal substrate.

15




II. INITIAL RESULTS FOR GASEOUS HF DIFFUSION

A.  BACKGROUND

This investigation considers the case in which adhesion must be
maintained over an approximately 10-year lifetime, during which there is a

slow evolution of corrosive HF gasu

from a material layer that has, on one
side, a sensitive adhesive/metal interface and, on the other side, a layer
of material (or a free surface) that is not sensitive. The polymer
adhesive is chosen to be the polyurethane, Uralane 5753. 1t has been often
informally proposed that filling the polymer with materials such as
alumina, carbon, strontium chromate, magnesium silicate, zinc oxide, or
titanium dioxide would create a barrier liner, which would reduce the
amount of HF incident on the wall. It is not clear a priori if this effect
should arise from chemically binding the HF within the liner or from
kinetically favoring diffusion to the material layer (or free surface) that
is not sensitive.

The Aerospace Materials Sciences Laboratory (MSL) has developed a
method for quantifying the resistance of filled polymers to gaseous HF
diffusion. The method provides quantitative transport coefficients for
filled polymers on the basis of (1) concentration profile measurements from
one-dimensional diffusion experiments and (2) the assumption of a
particular phenomenoclogical diffusion model. The determination of these
transport coefficients is the subject of this report. The subsequent
calculation of the HF flux incident on the metal surface will be discussed
in the next section.

The effectiveness of filler particles needs to be quantified for the
following reason. The matrix polymer must be selected for its intrinsic
bondability to titanium alloy and its intrinsic resistance to HF diffu-
sion. However, if filler particle effectiveness is well characterized,
then the matrix polymer can be selected with an increased emphasis on
intrinsic bondability and with the expectation that the filler will
adequately impede HF diffusion. Of course this approach must be used

17




cautiously, because it is highly unlikely that the properties of highly
filled systems will be simple averages of the intrinsic properties of the
filler and of the matrix.

B. INITIAL OBSERVATIONS

The search for a suitable barrier liner begins with the selection of
an appropriate matrix polymer. We initially experimented with polyvinyl
butyral (PVB), which is a well-known, chemically resistant resin manufac-
tured by Monsanto under the name of Butvar. By varying the polymerization
conditions, Monsanto produces different kinds of Butvar with differing
percentages of acetal, alcohol, and acetate side groups. We experimented
with the Monsanto Metal Coating 2009, containing 5.1 wt% phenolic, 13 wt%
epoxy, 2 wt¥ Butvar B-90, and 79.9% of various solvents.

In order to judge the HF resistance of the unfilled Coating 2009, we
first prepared the surfaces of Ti-6A1-4V coupons with sodium dichromate
(Na2Cr207) and sulphuric acid etching, followed by rinsing and vacuum
drying (see Fig. I-1). Metal Coating 2009 was then sprayed on these
coupons to a thickness of 5 + 2 mils (see Fig. 1I-1)., The original intent
was to use the metal surface beneath the coating as a "detector" of the
time-dependent corrosion caused by HF penetration. This experiment was
actually performed by holding a coated coupon for 1 day in a Teflon
accelerated-aging chamber of "pure" HF vapor. (Some ambient atmosphere was
present before the chamber was purged with HF.) 1In Fig. II-2a, it is seen,
first, that debonding occurred. Therefore, the duration of the originally
intended experiment could be no more than a few hours. Second, a
nonuniform buildup of corrosion products is seen in Fig. II-2a. Even if
the film had adhered to the coupons for a few hours, several cross sections
of one coupon specimen at one aging time could give widely varying results
for the corrosion buildup. These variations could be caused by thickness
variations of the sprayed films.

18




EFFECT OF HF EXPOSURE

0.5 in.

Fig. II-1. Titanium-Alloy Coupon as Originally Spray Coated with PVB,
Teflon block on the right is a sample holder.
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Fig. I1I-2.

(Top photo, next page) Enlarged View of One Corner of the
Coated Coupon in Fig. II-1 after 1 Day of Exposure to "Pure"
(see text) HF Vapor.

(Bottom photo, next page) Alumina-Filled (top) and Unfilled
(bottom) Uralane 5753 Samples Cut from Larger Slabs of
Material and Subjected to One-Dimensional Diffusion of HF
Vapor (from the left). The top sample is approximately 1/8
in. thick.
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Third, and most important, was that as corrosion products accumulate
at the metal interface within a coated coupon, the boundary conditions for
diffusion change. Diffusion is governed by a partial differential equation
whose solutions are codetermined by the boundary conditions at the metal
interface. In this initial experimental arrangement, the initial boundary
condition at the wall caused every impinging HF particle to interact with
the metal and thus disappear from Ehe diffusion process. After a suffi-
cient buildup of corrosion products, as shown in Fig. 1-2, the boundary
condition resulted in no impinging HF reaction. 1In the initial experiment,
it would have been difficult to separate this effect from the intrinsic
property of a barrier liner material to impede diffusion.

Because of these problems, we improved the experimental arrangement.
Our goal was to age the coupons in pure HF to accelerate diffusion and to
obtain experimentally manageable measurement times. To realize this goal,
we had to find a measurement configuration without time-dependent boundary
conditions, so that the transport properties of the liner material could be
clearly seen.

The improved arrangement selected for these diffusion experiments
included a large slug of filled or unfilled material cured in a poly-
ethylene cup of about 1 in. diam and 1 in. depth. The polyethylene, being
relatively impervious (because of its crystalline content) and unreactive
to HF, limited HF diffusion to one circular face of the sample when the cup
was placed in a Teflon jar containing HF. After the slug was exposed to
HF, it was sectioned so that ion mass microprobe analysis (IMMA) or X-ray
photoelectron spectroscopy (XPS) could be used to determine fluorine
content (normalized by carbon content) vs position. This experimental
arrangement was preferable because in any of our possible experimental
times, diffusion of HF to the back wall of the sample container was
impossible. Thus, the assumed boundary condition at the back wall was much
less important when evaluating the concentration profile.
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. It would have been advantageous to test filler/resin composites where
the resin is the liner material. However, this is not possible, because
the sprayable liner material contains a high percentage (80% in the case of
Monsanto 2009) of solvent. Attempts to cure such material in bulk always
yield large air bubbles. Attempts to cure such material layer by layer are
time consuming and result in stratified samples with unknown interfacial
resistance to diffusion between strata. Therefore, a model polymer was
used as the matrix, with and without several filler types. The purpose of

the experiment is to discover (1) how the matrix-polymer diffusion
coefficient is affected (compared to the unfilled matrix) by the presence
of the filler particles and (2) to what extent the filler particles
additionally contribute to the composite's diffusion coefficient (e.g., by
surface reactions on the filler particles that chemically trap some of the
fluorine). When this knowledge is subsequently applied to real liner
systems, the range5 of values for the unfilled matrix polymer can be
assumed to be 10’6 to 10'8
Table 11-1) with small gas molecules in polymer matrices. Using this range

cm2/sec, according to recorded experience (see

and experimental information, we can calculate the HF flux on the metal
substrate and thereby estimate the potential for corrosion.

Figure 11-2b exhibits specimens prepared from alumina-filled and
unfilled slugs of Uralane 5753 (polyurethane) and exposed to HF vapor for
12 days. These specimens were made several years previously by MSL in
conformance with a specification requiring a 10 £+ 2 um particle size (50 um
maximum). The alumina was fired at 700°C for 10 min and stored, covered,
at 100-130°C for 24 h before use. Figure 11-2b indicates that the filled
system does retard HF diffusion (shown by the darkest area of HF reaction).
An experimental technique was used to quantify the different HF concen-
tration profiles in the two samples shown in Fig. 1I-2b. However, before
describing this technique, we will construct a physical model for guidance
in the experimental design and in the interpretation of the resulting
profiles.
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hl Table II-1. Diffusion Coefficients® for Gas Molecules in
Solid Polymers at 25°cP

(MW=2)C  (MW=4)C  (MW=18)C  (MW=44)C

poly(1,3-butadiene) 9.6 - - 1.05

poly(butadiene- 6.43 15.5 -- 0.425
co-acrylonitrile)

poly(isoprene) -- 21.6 -- 1.25

poly(ethylene) -- 6.8 - 0.37
p=0.914

poly(ethylene) -- 3.07 -- 0.124
p=0.964

poly(ethyl methacrylate) -- 42.3 0.0989 0.033

poly(styrene) - 10.4 0.1 0.058

poly(tetrafluoro - - -~ 0.095
ethylene)

Teflon FEP -- -- - 0.105

poly(vinyl chloride) 2.8 0.0238 0.0025

3ynits are 10-6 cm?/sec.
bSee Ref. 5 (p. 111-232).
CMolecular weight in grams per mole.
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C. PHYSICAL MODEL FOR REACTIVE GAS DIFFUSION IN FILLED POLYMERS

Consider a one-dimensional slab of material between positions x = 0
and x = ¢. The slab initially contains zero HF. The concentration of HF
(number of HF particles per length of material) within the slab is denoted
by c(x,t), where t is time. In this continuum model, any filler particles
(micron sized) are considered to be much smaller than the slab
thickness, t. (The slab thickness is mil sized, i.e., about 25 times

larger than the particle size). A constant concentration, c,, of gas is

present at the slab surface, x = 0, and no gas transport is :ssumed to
occur at x = ¢£. However, as shown in the preceding section, this second
boundary condition is not critical for short experiment times. It is
required to determine c(x,t) in order to calculate the number of HF

particles that impinge on the back wall of the sample.

The analysis of unreactive gas diffusion proceeds in terms of a
diffusion coefficient, D, for the system. The analysis must be refined for
the present case of reactive gas. We hypothesize that the following
boundary-value equations are applicable to this problem, where H is the
reactivity of the gas with the system and - He is the rate of HF particle
reduction resulting from this reaction:

2
Daxc - He = atc (1)

for 0 s x s 2, t 20 and D and H constant

Initial condition:

e(x,0) = 0 (2)
Boundary conditions:
c(o,t) = ¢, (3)
axc(n,t) =0 ()
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HI In this boundary value problem, the units of D are evidently area per time,
and the units of H are inverse time. The feature that allows for the
reactive nature of the gas is the term - He.

There are at least three possible physical interpretations for the
term - He. [Of course, the phenomenological suitability of the model can
only be established by matching calculated and measured profiles.
Acceptance or rejection of the microscopic mechanisms(s) underlying this
problem must be determined by other methods.] First, - He could be a sink
term for the annihilation of diffusing molecules at a rate proportional to
the concentration of HF. A sink term is common in heat conduction problems
but would confliet with our ideas about the conservation of matter.

Second, the - Hc term could refer to a rate of trapping (chemically
immobilizing) the diffusing particles by reactive sites in the system.

This idea seems attractive but does not allow for the saturation of
available trap sites at very long times. Third, the - Hc term could refer
to the rate of diffusion-channel clogging by the ongoing process of
chemical reaction and physical adsorption of the diffusing particles. This
interpretation can be considered mathematically to be caused by a reverse
current of rejected particles. This current reduces the net flux of
particles into regions of lower concentration. Alternately, and mcst
generally, this third case can be interpreted as due to a time-dependent
diffusion coefficient resulting from all physical and chemical processes of
diffusant immobilization. Consider the case of no reaction:

-v-J = 3.c (5a)

t
clx,t) = - [ dt° v-J(x,t") (5b)
o

where J is the particle flux. When reaction occurs

-V-Jerf = «¥:J - He = atc (6a)
t
e(x,t) = - [ dt LANEP (6b) .
(o}
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h . where Jope is the net flux into regions of lower concentration. Formally
combining Egs. (6a) and (6b), we obtain

"
(-4

t
L -v-d + H£ dt” V-d pp ¢© (12)

Assuming interchangeability of integration and differentiation for non-

pathological functions
t
-v-(J - H { dt” J .p) = 3. (7b)

Comparing Eqs. (6a) and (7b)

t
Jopp(Xst) = J(x,t) - H £ dt” J pplx,t") (7e)

We define an effective diffusion coefficient, Deff(x,t), by

(x,t) = =D __.(x,t)v e(x,t) (8a)

Jers eff

Therefore, whenever V¢ is nonzero, Egs. (7c) and (8a) yield

Degp

t
_ . -y Ve(x,t7)
(x,£) =D -H £ dt” Do o(x,t7) Vol t) (8b)
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This equation is of the form

t
Dypp(t) = D - H £ dt” D pplt”) K(t",t) (8c)

which is a Volterra integral equation with the kernel K(t’,t).6 Deff(t) is
a function whose value clearly decreases monotonically from the value D at
t = 0. Before Eq. (8c) can be solved, c(x,t) must be found.

The solution e(x,t) to the single slab problem specified by
Eqs. (1)-(4) could be obtained from a Sturm-Liouville eigenvalue
approach. However, the calculation of HF flux at the metal substrate (to
be presented in Section III) clearly must allow for two adjacent layers
(matrix and liner). Churchill has shown that the solution to such a
problem, in which there is more than one layer, cannot be constructed with
the Sturm-Liouville approach. Therefore, the alternate method of Ref. 8 is
used here as a deliberate choice and in subsequent multislab calculations

as a necessity.

Laplace-transf‘orming9 Egs. (1) and (2), we obtain

aiE - wZE =0 (9a)

W = (9b)

where c(s) is the Laplace transform of c(t), suppressing the x-variable
notation. Consequently

¢ = A cosh wx + B sinh wx (9¢)

where A and B are constants. Applying Eqs. (3) and (4), we obtain

c(s) = 5 {

coshlw(1 - x/l)]] (94)

cosh wi
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Letting the denominator of c(s) be denoted by f(s), we obtain

f(s) = s cosh{ 5 1) (10a)

Note that f(s) > O for all s > 0. For s =0, f(s) = 0. For s < O and
Is| < H, f(s) < 0. For s <0 and |s| > H, £f(s) = O whenever

-(H + sn)
0=s, cosh|i N ] (10b)

s, =-y-Ln=-1 (10¢)

or

=
]

-
™
w

Therefore, the pole structure (which is all first order) of ¢(s) is

Im(s) Is

e oo o —Y——X—]

Sn 83 82 31

Re(s)

10

Expanding c(s) according to the Mittag-Leffler theorem, '~ we have

Res[c(s),sn]

c(s) = (11a)

Res[c(s), 0] ‘i’
n=1

S S - 8
n




where Res[c(s), s”] denotes the residue of c(s) at s = s*. Evaluating the
residues, we have

_ ¢_ cosh{w (1 - x/1})]
Res[c(s), o] = o -

cosh uot (11b)

w, = vH/ (11c)

_ = /-(s_+ H) -(H + s)
Res[c(s),s ] = 2c, i% . -———-2————- sin| / '__TT__E— x] (11d)
n

Laplace-inverting Eq. (11a), we obtain

e(x,t) _ cosh{w t(1 - x/2)] . 2/D f _:ifﬂ_:_ﬂl sin| :ifﬂ_:_ﬂl x] exp(s_t)
¢, cosh wol ) nz S, D n
wy = /m
(an - 12
sn:-H- = ns= 1,2,3,... (12)
TS
Du2

D. COMPUTER CALCULATIONS AND THEIR PHYSICAL INTERPRETATION

The results shown in Eq. (12) have been programmed on the Aerospace
Space Science Laboratory's (SSL's) "DIRAC" VAX. The normalized profiles,
{e(x,t)/e,), are given in Figs. I11-3 through I1-7. Figure II-3 represents
the case H = 0, which is diffusion without chemical reaction, diffusion-

channel clogging, and so on. In this report, we use megaseconds as the
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Fig. 11-3. Calculated Diffusion Profiles for H = 0 Msec™!
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Fig. II-4., Calculated Diffusion Profiles for H = 1 Msec'1
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Fig. 11-6. Calculated Diffusion Profiles for H = 100 Msec™'
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Fig. 11-7. Calculated Diffusion Profiles for H = 1000 Msec™’

33




unit of time for the calculations. One megasecond is 278 h. At long
times, t > 2 Msec > 1 = 0.406 Msec, the profile is flat, and diffusion is
complete.

- Numerical values of the parameters used in the calculation of the
normalized profiles are as follows:

D=1 cmz/Msec

[} 1 cm

HzZ/Dnz : 0.406 Msec

T
t in Msec (1 Msec = 278 h)
X in om

Profiies were calculated at the following times: 10‘3, 5 x 10'3, 10'2,
5 x 1072, 1071, 0.5, 1, and 2 Msec.

Figure 1I-3 shows calculated profiles for H = 0 Msec'1; Fig. 1I-4, for
H = 1 Msec™!; Fig. 11-5, for H = 10 Msec™'; Fig. 11-6, for H = 100 Msec™ ',
and Fig. 11-7 for H = 1000 Msec™!. In Fig. 1I-4 (where H = 1), we see that
the 0.5, 1, and 2 Msec results are significantly shifted. In fact, even as
t »+ o, the flat profile is not attained. This is shown by taking the
derivative, Oy of Eq. (12) at x = 0 and letting t tend to infinity:

6 = lim El 3,c ! z - J/g tanh [//g %) (13a)

Because % < 0 for H> 0, the flat profile is never attained. The final
value, Po’ for the plateau level is

P = lim — c(1,t) = sech [./E 1) (13b)
° " tee % D

Some numerical results for % and Po are given in Table II-2.
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Table 1I-2. Initial Slopes (o) and Final Plateau
Levels (P_) for tBe Normalized Profiles
for Severgl Values of the Interaction
Parameter H

H o P
-1 R 01 [o]
(Msec™ ') (em™ ') {(dimensionless)
0 0 1
-0.762 0.65
10 -3.15 0.085
100 -10.0 1074
1000 -31.6 10~ 18

This suppression of the infinite-time plateau, shown in Figs. I11-4
through 11-7, is consistent with a "rejection current" resulting from
annihilation, trapping, clogging, and so on:

3
L=-] dxHe(x,t) (14a)
o

G = J(o,t) = - DV c(x,t) | (14b)
X=0

where L is the rate of reduction of mobile HF particles throughout the slab
and G is the rate of increase of HF particles caused by diffusion from the
environment into the slab at position x = o. As the time tends to
infinity, the integral and the derivative of the infinite series terms
[compare Egs. (12), (14a), and (14b)] are zero, so that L = - /HD S and

G = /HD <, (particles/Msec).
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In Fig. 1I-5 (H = 10), we see that the results for t = 0.5, 1, and
2 Msec actually superimpose. In Fig. II-6 (H = 100), the last five times
have coincident profiles. In Fig. 1I-7 (H = 1000), this saturation is
reached at t = 5 x 1073 Msec, which is only about 1.4 h. C(Clearly, HF
diffusion can be significantly restricted for a sufficiently large
interaction parameter, H. If measurements are made at a time close to the
system relaxation time, v, and if a result is obtained like that for t =
0.5 Msec (1.25 1) in Fig. I1I-3, then H is undoubtedly very small. If the
results are like those from t = 0.005 to 2 Msec in Fig. I1-7, then H is
very large. We need a method for extracting D and H from measured
profiles.

We know6 that one-dimensional diffusion into an unbounded medium is
governed by <x> = 2 /Dt, where <x> is an "effective" penetration depth. 1In
Fig. 11-3, let <x> be the position at which c(x,t)/co assumes the value
0.17. The values in Fig. 11-3 of <x> for t = 1073 to 10~ Msec are
unaffected by the presence of the back wall of the sample container. These
values are listed in Table 1I1-3 and Fig. 11-8. On the other hand, the role

Table 11-3. Propagation Into an Unbounded Medium?

x> t /t <x>/(2vt) b

(cm) (Msec) (Msec'/2) (cm/Msec /) (em?/Msec)
0.062 0.001 0.0316 0.98 0.96
0.14 0.005 0.0705 0.99 0.98
0.20 0.010 0.1000 1 1

0.4y 0.050 0.2236 0.98 0.96
0.61 0.100 0.3162 0.96 0.92

3pata from Fig. I11-3 (H = 0) for t < 0.1 Msec:
(x> defined at c(x,t)/co = 0.17
D = 1 em©/Msec
D = apparent (secant) value of D (see Fig. 1I-8)
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"Effective" Diffusion Front (H = 0) Advances According to <x> =
2/Dt into an Unbounded Medium (for t < 1, i.e., when the back
wall plays no role). The plotted points are obtained from

Fig. 1I-3 (see text).
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of H = 10 in Fig. 1I-5 is seen in Table 1I1-4 and Fig. 1I1-9 as a deviation
from the "classical® <x> = 2 /Dt trajectory. The deviation of <x> from

2 /Dt is most pronounced in the case of H = 1000 Msec™! (see Table 1I-5 and
Fig. 11-10).

Table II-4. Propagation into an Unbounded Medium®

<x> t /t <x>/(2/%) b
{cm) (Msec) (Hsec’/z) (cm/Hsec‘lz) (cm2/Hsec)
0.062 0.001 0.0316 0.98 0.96
0.14 0.005 0.0705 0.99 0.98
0.19 0.010 0.1000 0.95 0.90
0.39 0.050 0.2236 0.87 0.76
0.49 0.100 0.3162 0.77 0.59
0.585 0.5 0.705 0.4 0.17

3pata from Fig. 11-5 (H = 0) for t < 0.5 Msec:
<x> defined at c(x,t)/co = 0.17
D = 1.0 cm“/Msec
b = apparent (secant) value of D (see Fig. 1I-9)

Compare Figs. 11-8, 11-9, and 11-10, where <x> is plotted vs /t. In
Fig. 11-8, when several measurements lie on a straight line through the
origin, we may identify the slope with 2 /D. From Fig. 11-8, by itself, we
can only conclude that the measurement times are too short for any H value
to be determined (although we know that H = 0 in this particular case).
Figure 11-10 is at the other extreme, where there are not at least two
nonzero <x> measurements on a straight line through the origin. We can
only conclude that the measurement times were too long to determine D,
Figure I11-9 is the intermediate case, where D can be determined from the
slope of the line that passes through the first two nonzero <x> points as
well as the origin. The value of H in Fig. 11-9 can be determined as
follows.
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Fig. 11-10.
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Table 1I1-5. Propagation Into an Unbounded Medium?

x> t /t <x>/(2/t) )

(cm) (Msec) (Msec1/2) (cm/Msec1/2) (cm2/Hsec)
0.047 0.001 0.0316 0.74 0.4
0.057 0.005 0.0705 0.40 0.16
0.057 0.010 0.1000 0.28 0.078
0.057 0.050 0.2230 0.13 0.017
0.057 0.100 0.3162 0.09 0.008

8pata from Fig. I1I-7 (H = 0) for t < 0.1 Msec:
<x> defined at c(x,t)/c° = 0,17
D 1.0 em®/Msec
D = apparent (secant) value of D (see Fig. 1I1-10)

Ordinary (H = 0) diffusion into a slab may be considered as a relax-
ation of concentration with a time constant 1 = sz/Dnz. This relaxation
is typical of a process occurring at a rate v, where

ve22 (15a)
/t
t —
o = [ ov(thdt' = 2 /Dt (15b)
(e}

On the other hand, consider the data from Figs. 11-3 through 11-7, listed

in Table II-6. Apparently, a second relaxation is occurring with a time

constant H™!. We hypothesize, therefore, that

V= 7”% exp (-Ht) (16a)
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i' i t
= [ vendr = /28 et (viit) (16b)
[o]

Using the expansion11 of the error function as well as its asymptotic
value, we find

2
o> = 2 sbe [1- B, D

3 1 | (16c)
xy = 2 /Dt Ht << 1 (16d)
x> =z / Dx t + (16e)

H

Letting £ = <x>/(2 ¢/Dt) and using Eq. (16c) (up to the quadratic term), we
obtain the value of H from the short-time deviation of <x> from 2 /Dt as
follows:
1 1
= - = -0.4 -
y 1 [3 3 0.4 (1 f)] (1)
t 0.2 N

Table 11-6. Correlation of Profile Saturation with the
Value of the Interaction Parameter, H2

H Approximate saturation time 1/H
(Msec™ 1) (Msec) (Msec)
0 ® ®

2 1
10 0.5 0.1
100 0.05 0.01
1000 0.005 0.001

8pata from Figs. I11-3 through II1-7.
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Applying Egqs. (16)-(17) in Fig. 11-9, we find that classical <x> =
2 /Dt diffusion occurs for t << H™! = 0.1 Msec. We also find that
/Dx/H = 0.56 cm is a reasonable extrapolation for long-time behavior. To
find H, we interpolate a synthetic data point between t = 0.01 and 0.05,
balancing the requirements of t << 0.1 Msec and of <x> being measurably
different from 2/Dt. We use t = 0.0256 Msec and <x> = 0.29 cm. Applying
Eq. (17) with f = 0.29/0.32 = 0.906, we find H = 12 Hsec’1, which deviates
significantly from the true value, H = 10 Msec™!. We conclude that the
small deviations from the classical behavior will not accurately determine
H. This is a strong conclusion, because it implies that diffusion-profile
measurements must be made at times close to the system relaxation time
(x = uzz/nnz) in order to determine H, These times should be as follows:
for £ = 2.54 cm and D = 1.0 cm°/Msec, 1 = 2.6 Msec = 727 h = 30.3 days;
for ¢ = 2.54 cm and D

such measurement times are impracticable. Therefore, H values, such as

"
]

0.01 cmz/Msec, t = 3030 days = 8.3 years. However,

those in Fig. 11-9, are best estimated only by order of magnitude.

To accurately determine H, we must have plateau values of (x> vs /t.
For example, Fig. II-11 shows one more data point (at 0.5 Msec, taken from
Fig. 1I-4) than Fig. 11-9. The plateau value is 0.585 em. Using
Eq. (16e), H = 9.2 Msec™!. This determination of H is not in agreement
with the true value of 10; however, it is at least an improvement over the
estimate from short-time behavior. The presence of the back wall of the
sample may be affecting this result. The agreement could possibly be
improved if a refinement of the simple postulate, Eq. (16a), could be
obtained. Considering Table I1-5 and Fig. 11-10, we note that the
saturation <x> = 0.057 cm is consistent with H = Du/(x)2 = 967 Msec",
which is close to the true value, H = 1000 Msec". For such a strong
interaction parameter, the measurements may be done in a time much less
than 1. The problem, as noted in the discussion of Fig. I1I-10, is that D
cannot be determined from this data. Shorter measurement times would have
to be used to obtain the slope of x> vs /t in the classical regime.
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In summary, to determine the D and H values for a system, data must be
obtained in the form shown in Fig. II-11. 1In this figure, the initial
slope provides D, and the final plateau provides /Dx/H. If we cannot
obtain long enough measurement times to reach the plateau, we must either
assume H = O or at best estimate the order of magnitude of H. Of course,
if the results remain on the <x> =2 /Dt trajectory (until coupling to the
back wall of the sample invalidates the unbounded-medium condition), then H

= 0, or at least H <« —_

D and H must be determined for each polymer/gas system. H specifies
the essential trapping/reactive nature of the filler particles (in conjunc-
tion with the matrix). If the H parameter is unmeasurably small, then
there is no evidence to support the surface reactivity interpretation of
the filler particle effect. But considering the visual impression of
Fig. 1I-2b, it is anticipated that filler particles make a real differ-
ence. Even if there were no "H effect,” there are important effects of the
filler upon D. These effects have been documented in the diffusion of
inert gases, as discussed in the next two paragraphs.

In the most widely accepted model for gas transport through -

12-16

polymers at temperatures below the glass transition temperature, T

81

each gas molecule must jump between fixed free-volume sites. Above T, the

’
polymer segments are more mobile and the available, mobile free-volumz
vacancies for 